Calcite reinforced silica-silica joints in the biocomposite skeleton of deep-sea glass sponges

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Hermann Ehrlich - , Technische Universität Dresden (Autor:in)
  • Eike Brunner - , Professur für Bioanalytische Chemie (AnC1) (Autor:in)
  • Paul Simon - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Vasily V. Bazhenov - , RAS - Institute of Chemistry, Far Eastern Branch (Autor:in)
  • Joseph P. Botting - , Leeds Discovery Centre (Autor:in)
  • Kontantin R. Tabachnick - , RAS - P.P. Shirshov Institute of Oceanology (Autor:in)
  • Armin Springer - , Technische Universität Dresden (Autor:in)
  • Kurt Kummer - , Technische Universität Dresden (Autor:in)
  • Denis V. Vyalikh - , Professur für Oberflächenphysik (Autor:in)
  • Serguei L. Molodtsov - , European XFEL (Autor:in)
  • Denis Kurek - , Russian Academy of Sciences (Autor:in)
  • Martin Kammer - , Technische Universität Dresden (Autor:in)
  • René Born - , Technische Universität Dresden (Autor:in)
  • Alexander Kovalev - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Stanislav N. Gorb - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Petros G. Koutsoukos - , University of Patras (Autor:in)
  • Adam Summers - , University of Washington (Autor:in)

Abstract

The hierarchically structured glass sponge Caulophacus species uses the first known example of a silica and calcite biocomposite to join the spicules of its skeleton together. In the stalk and body skeleton of this poorly known deep-sea glass sponge siliceous spicules are modified by the addition of conical calcite seeds, which then form the basis for further silica secretion to form a spinose region. Spinose regions on adjacent spicules are then joined by siliceous crosslinks, leading to unusually strong cross-spicule linkages. In addition to the biomaterials implications it is now clear, from this first record of a biomineral other than silica, that the hexactinellid sponges are capable of synthesizing calcite, the ancestral skeletal material. We propose that, while the low concentrations of calcium in deep sea waters drove the evolution of silica skeletons, the brittleness of silica has led to retention of the more resilient calcite in very low concentrations at the skeletal joints.

Details

OriginalspracheEnglisch
Seiten (von - bis)3473-3481
Seitenumfang9
FachzeitschriftAdvanced functional materials
Jahrgang21
Ausgabenummer18
PublikationsstatusVeröffentlicht - 23 Sept. 2011
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • biomineralization, composite materials, hierarchical Structures, silica