Bounding the signed count of real bitangents to plane quartics
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Using methods from enriched enumerative geometry, Larson and Vogt gave a signed count of the number of real bitangents to real smooth plane quartics. This signed count depends on a choice of a distinguished line. Larson and Vogt proved that this signed count is bounded below by 0, and they conjectured that the signed count is bounded above by 8. We prove this conjecture using real algebraic geometry, plane geometry, and some properties of convex sets.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1003-1013 |
Seitenumfang | 11 |
Fachzeitschrift | Manuscripta mathematica |
Jahrgang | 173 |
Ausgabenummer | 3-4 |
Publikationsstatus | Veröffentlicht - März 2024 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85163070505 |
---|---|
Mendeley | 2065be63-12f5-305d-b051-7ef10e181ef8 |
Schlagworte
Schlagwörter
- 14N10, Primary 14H50, Secondary 14P99