Bounding the signed count of real bitangents to plane quartics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Using methods from enriched enumerative geometry, Larson and Vogt gave a signed count of the number of real bitangents to real smooth plane quartics. This signed count depends on a choice of a distinguished line. Larson and Vogt proved that this signed count is bounded below by 0, and they conjectured that the signed count is bounded above by 8. We prove this conjecture using real algebraic geometry, plane geometry, and some properties of convex sets.

Details

OriginalspracheEnglisch
Seiten (von - bis)1003-1013
Seitenumfang11
FachzeitschriftManuscripta mathematica
Jahrgang173
Ausgabenummer3-4
PublikationsstatusVeröffentlicht - März 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85163070505
Mendeley 2065be63-12f5-305d-b051-7ef10e181ef8

Schlagworte

Schlagwörter

  • 14N10, Primary 14H50, Secondary 14P99