Bottom-up Neurogenic-inspired Computational Model

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

In this study, we explore computationally the role of the dentate gyrus (DG) in the hippocampus, particularly its significant contribution to the neurogenic process in the adult brain and its role in learning and memory. We introduce a novel computational model, a feedforward multi-layer perceptron oscillatory neural network (MLP-ONN), that incorporates biologically accurate features of the hippocampal-entorhinal cortical network (i.e., DG, CA3, EC). This model leverages empirical data gathered from large-scale simultaneous recordings using a high-density 4096-microelectrode sensing array, providing exceptional spatiotemporal resolution. Unlike previous models, ours considers a dynamically varying DG network size, sparse non-linear oscillatory input patterns, and a dynamic supervised-Hebbian learning rule. We suggest that the incorporation of increasing firing units within the DG layer, with specific levels of sparsity, enhances the well-posedness of our model. This work marks a significant leap in understanding the implications of newly generated neurons in the adult DG network and their broad functional and computational impacts.

Details

OriginalspracheEnglisch
Titel2023 IEEE BioSensors Conference, BioSensors 2023 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)979-8-3503-4604-6
ISBN (Print)979-8-3503-4611-4
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheBioSensors Conference (BioSensors)

Konferenz

Titel1st Annual IEEE BioSensors Conference
KurztitelBioSensors 2023
Veranstaltungsnummer1
Dauer30 Juli - 1 August 2023
Webseite
OrtHoliday Inn London - Kensington High St
StadtLondon
LandGroßbritannien/Vereinigtes Königreich

Externe IDs

ORCID /0000-0002-5304-4061/work/147142048

Schlagworte

Schlagwörter

  • Large-scale biosensor, oscillatory neural network, posedness, supervised-Hebbian learning