Bi-Linearity of Back Gated Schottky Barrier Transistors on an Industrial 22nm FDSOI Platform for Efficient In-Hardware Matrix-Vector Multiplication and Addition
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Machine Learning and AI approaches have stretched traditional hardware to its limits. In-hardware computing is a novel approach that aims to run Matrix-Vector Multiplication operations directly at the device level for increased efficiency. This work shows that the current of a back-bias Schottky barrier transistor built on an industrial 22nm FDSOI platform responds linearly to changes in either the source-gate or the source-drain voltage. This bi-linearity, alongside the access to independent biasing through the back gate, which allows analog vector addition directly at the device level, has great potential for in-hardware computation. The performance and multilevel operation is demonstrated by simulating a 2 × 2 crossbar array, which successfully performs matrix-vector multiplication and addition. The simulations employ a Verilog-A table model of actual industrial devices, highlighting the potential to integrate these devices into hardware accelerators in the short term.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | 2025 23rd IEEE Interregional NEWCAS Conference, NEWCAS 2025 |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seiten | 470-474 |
| Seitenumfang | 5 |
| ISBN (elektronisch) | 9798331532567 |
| Publikationsstatus | Veröffentlicht - 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Annual IEEE Northeast Workshop on Circuits and Systems (NEWCAS) |
|---|
Konferenz
| Titel | 23rd IEEE Interregional NEWCAS Conference |
|---|---|
| Kurztitel | NEWCAS 2025 |
| Veranstaltungsnummer | 23 |
| Dauer | 22 - 25 Juni 2025 |
| Webseite | |
| Ort | Les Cordeliers |
| Stadt | Paris |
| Land | Frankreich |
Externe IDs
| ORCID | /0000-0003-3814-0378/work/193705555 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- 22nm FDSOI technology, AI-optimized hardware, Back-bias Schottky barrier transistors, Crossbar Array, In-hardware Computing