Bi-Linearity of Back Gated Schottky Barrier Transistors on an Industrial 22nm FDSOI Platform for Efficient In-Hardware Matrix-Vector Multiplication and Addition

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Machine Learning and AI approaches have stretched traditional hardware to its limits. In-hardware computing is a novel approach that aims to run Matrix-Vector Multiplication operations directly at the device level for increased efficiency. This work shows that the current of a back-bias Schottky barrier transistor built on an industrial 22nm FDSOI platform responds linearly to changes in either the source-gate or the source-drain voltage. This bi-linearity, alongside the access to independent biasing through the back gate, which allows analog vector addition directly at the device level, has great potential for in-hardware computation. The performance and multilevel operation is demonstrated by simulating a 2 × 2 crossbar array, which successfully performs matrix-vector multiplication and addition. The simulations employ a Verilog-A table model of actual industrial devices, highlighting the potential to integrate these devices into hardware accelerators in the short term.

Details

OriginalspracheEnglisch
Titel2025 23rd IEEE Interregional NEWCAS Conference, NEWCAS 2025
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten470-474
Seitenumfang5
ISBN (elektronisch)9798331532567
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheAnnual IEEE Northeast Workshop on Circuits and Systems (NEWCAS)

Konferenz

Titel23rd IEEE Interregional NEWCAS Conference
KurztitelNEWCAS 2025
Veranstaltungsnummer23
Dauer22 - 25 Juni 2025
Webseite
OrtLes Cordeliers
StadtParis
LandFrankreich

Externe IDs

ORCID /0000-0003-3814-0378/work/193705555

Schlagworte

Schlagwörter

  • 22nm FDSOI technology, AI-optimized hardware, Back-bias Schottky barrier transistors, Crossbar Array, In-hardware Computing