Big Ramsey Degrees and Infinite Languages

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Samuel Braunfeld - , Karlsuniversität Prag (Autor:in)
  • David Chodounský - , Karlsuniversität Prag, Czech Academy of Sciences (Autor:in)
  • Jan Hubička - , Karlsuniversität Prag (Autor:in)
  • Jamal Kawach - , University of Toronto (Autor:in)
  • Matěj Konečný - , Professur für Algebra und Diskrete Strukturen, Karlsuniversität Prag (Autor:in)
  • Noé de Rancourt - , Laboratoire Paul Painlevé - CNRS UMR 8524 (Autor:in)

Abstract

This paper investigates big Ramsey degrees of unrestricted relational structures in (possibly) infinite languages. Despite significant progress in the study of big Ramsey degrees, the big Ramsey degrees of many classes of structures with finite small Ramsey degrees are still not well understood. We show that if there are only finitely many relations of every arity greater than one, then unrestricted relational structures have finite big Ramsey degrees, and give some evidence that this is tight. This is the first time finiteness of big Ramsey degrees has been established for a random structure in an infinite language. Our results represent an important step towards a better understanding of big Ramsey degrees for structures with relations of arity greater than two.

Details

OriginalspracheEnglisch
Aufsatznummer26
Seitenumfang26
FachzeitschriftAdvances in Combinatorics
Jahrgang2024 (2024)
PublikationsstatusVeröffentlicht - 10 Aug. 2024
Peer-Review-StatusJa

Schlagworte