Big data causing big (TLB) problems: Taming random memory accesses on the GPU
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
GPUS are increasingly adopted for large-scale database processing, where data accesses represent the major part of the computation. If the data accesses are irregular, like hash table accesses or random sampling, the GPU performance can suffer. Especially when scaling such accesses beyond 2GB of data, a performance decrease of an order of magnitude is encountered. This paper analyzes the source of the slowdown through extensive micro-benchmarking, attributing the root cause to the Translation Look aside Buffer (TLB). Using the micro-benchmarks, the TLB hierarchy and structure are fully analyzed on two different GPU architectures, identifying never before- published TLB sizes that can be used for efficient large-scale application tuning. Based on the gained knowledge, we propose a TLB-conscious approach to mitigate the slowdown for algorithms with irregular memory access. The proposed approach is applied to two fundamental database operations - random sampling and hash-based grouping - showing that the slowdown can be dramatically reduced, and resulting in a performance increase of up to 13x.
Details
Originalsprache | Englisch |
---|---|
Titel | DAMON '17: Proceedings of the 13th International Workshop on Data Management on New Hardware |
Herausgeber (Verlag) | Association for Computing Machinery (ACM), New York |
Seitenumfang | 10 |
ISBN (Print) | 978-1-4503-5025-9 |
Publikationsstatus | Veröffentlicht - 14 Mai 2017 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | MOD: International Conference on Management of Data (DaMoN) |
---|---|
ISSN | 0730-8078 |
Konferenz
Titel | 13th International Workshop on Data Management on New Hardware, DAMON 2017 |
---|---|
Dauer | 14 - 19 Mai 2017 |
Stadt | Chicago |
Land | USA/Vereinigte Staaten |
Externe IDs
Scopus | 85021772296 |
---|---|
ORCID | /0000-0001-8107-2775/work/142253579 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- GPU, Grouping, Random memory access, TLB, Virtual memory