Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Nonautonomous bifurcation theory studies the change of attractors of nonautonomous systems which are introduced here with the process formalism as well as the skew product formalism. We present a total stability theorem ensuring the existence of nearby attractors of perturbed systems. They depend continuously on a parameter if and only if the attraction is uniform w.r.t. parameter, i.e. the attractors are equiattracting. We apply these principles to explicit systems to clarify the meaning of continuous and abrupt transitions of attractors in contrast to bifurcations, i.e. splitting of minimal invariant subsets into others within the attractor. Several examples are treated, including a nonautonomous pitchfork bifurcation.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 743-762 |
Seitenumfang | 20 |
Fachzeitschrift | International journal of bifurcation and chaos in applied sciences and engineering |
Jahrgang | 15 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - März 2005 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
ORCID | /0000-0003-0967-6747/work/149795390 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Attractor bifurcation, Attractor transition, Nonautonomous dynamical system, Nonautonomous pitchfork bifurcation, Process, Skew product flow, Subcritical bifurcation, Supercritical bifurcation, Total stability