Bicyclic Selenenyl Sulfides with Tuned Bioreductive Step Rates Reveal Constraints for Probes Targeting Thioredoxin Reductase

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Lukas Zeisel - , Professur für Organische Chemie (II) (OC2), Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Lucas Dessen-Weissenhorn - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Karoline Scholzen - , Karolinska Institutet (Autor:in)
  • Andrea Madabeni - , Università degli studi di Padova (Autor:in)
  • Laura Orian - , Università degli studi di Padova (Autor:in)
  • Elias S. J. Arnér - , Karolinska Institutet, National Institute of Oncology (Autor:in)
  • Oliver Thorn-Seshold - , Professur für Organische Chemie (II) (OC2) (Autor:in)

Abstract

The reductive activation of dichalcogenide probes by thiol-type oxidoreductases proceeds through a cascade of consecutive, partly reversible steps. Stereocontrol elements can modulate the reaction rates of these steps to reach substrate-controlled kinetic selectivity for reductase chemotypes in live cells. We now deploy regio-, diastereo-, template-, and pH-control elements to shape the reactivity of unprecedented bicyclic selenenyl sulfides (SeSP), arriving at probes that selectively target the mammalian selenoenzyme thioredoxin reductase TrxR1. We accessed these densely functionalised cis- or trans-fused 1,2-thiaselenanes on gram scale over 5 steps by using a regioselective key step that elaborates an unusual, differentially protected 2,2′-bis-aziridine intermediate through sequential one-pot chalcogen introduction and selenenyl sulfide formation. By profiling a set of regio- and diastereoisomeric bicycles for their partly or fully reversible reactivity during reductive activation, we show how effects that slow their reduction steps (addition then resolution) can compensate by vastly accelerating subsequent activation (cyclisation) speeds, such that cellular processing is effective and TrxR-selective. More broadly, this study shows how multistep cascade probes can leverage conformational effects and internal noncovalent interactions to differentiate step kinetics along their on-target versus off-target reaction pathways, thus achieving reaction-based target selectivity in complex biological settings.

Details

OriginalspracheEnglisch
Aufsatznummere202508911
Seitenumfang10
FachzeitschriftAngewandte Chemie International Edition
Jahrgang64
Ausgabenummer35
Frühes Online-Datum30 Juni 2025
PublikationsstatusVeröffentlicht - 25 Aug. 2025
Peer-Review-StatusJa

Externe IDs

Scopus 105010916332
PubMed 40583823