Biased diffusion inside regular islands under random symplectic perturbations

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexandra Kruscha - , Max-Planck-Institut für Physik komplexer Systeme, Technische Universität Dresden (Autor:in)
  • Roland Ketzmerick - , Professur für Computational Physics, Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Holger Kantz - , Max-Planck-Institut für Physik komplexer Systeme, Technische Universität Dresden (Autor:in)

Abstract

We study the random concatenation of slightly different two-dimensional Hamiltonian maps with a mixed phase space. We consider a regular island whose fixed point is identical for all maps. Trajectories of the concatenated maps near this fixed point are no longer confined to invariant tori. We derive a stochastic model for the distance from the fixed point, which turns out to be a biased random walk with multiplicative noise. We give an analytical prediction of the survival probability of trajectories inside the regular island, which asymptotically is the product of a power law and an exponential. We confirm these results numerically for the parametrically perturbed standard map.

Details

OriginalspracheEnglisch
Aufsatznummer066210
FachzeitschriftPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Jahrgang85
Ausgabenummer6
PublikationsstatusVeröffentlicht - 28 Juni 2012
Peer-Review-StatusJa