Bayesian Multi-Objective Optimisation of Neotissue Growth in a Perfusion Bioreactor Set-Up

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

  • Simon Olofsson - , Imperial College London (Autor:in)
  • Mohammad Mehrian - , University of Liege (Autor:in)
  • Liesbet Geris - , University of Liege (Autor:in)
  • Roberto Calandra - , University of California at Berkeley (Autor:in)
  • Marc Peter Deisenroth - , Imperial College London (Autor:in)
  • Ruth Misener - , Imperial College London (Autor:in)

Abstract

We consider optimising bone neotissue growth in a 3D scaffold during dynamic perfusion bioreactor culture. The goal is to choose design variables by optimising two conflicting objectives: (i) maximising neotissue growth and (ii) minimising operating cost. Our contribution is a novel extension of Bayesian multi-objective optimisation to the case of one black-box (neotissue growth) and one analytical (operating cost) objective function, that helps determine, within a reasonable amount of time, what design variables best manage the trade-off between neotissue growth and operating cost. Our method is tested against and outperforms the most common approach in literature, genetic algorithms, and shows its important real-world applicability to problems that combine black-box models with easy-to-quantify objectives like cost.

Details

OriginalspracheEnglisch
TitelComputer Aided Chemical Engineering
Herausgeber (Verlag)Elsevier Science B.V.
Seiten2155-2160
Seitenumfang6
PublikationsstatusVeröffentlicht - Okt. 2017
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

Reihe Computer aided chemical engineering
Band40
ISSN1570-7946

Externe IDs

ORCID /0000-0001-9430-8433/work/158768045

Schlagworte

Schlagwörter

  • Bayesian optimisation, black-box optimisation, bone neotissue engineering, multi-objective optimisation, tissue engineering