Bayesian Multi-Objective Optimisation of Neotissue Growth in a Perfusion Bioreactor Set-Up
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
We consider optimising bone neotissue growth in a 3D scaffold during dynamic perfusion bioreactor culture. The goal is to choose design variables by optimising two conflicting objectives: (i) maximising neotissue growth and (ii) minimising operating cost. Our contribution is a novel extension of Bayesian multi-objective optimisation to the case of one black-box (neotissue growth) and one analytical (operating cost) objective function, that helps determine, within a reasonable amount of time, what design variables best manage the trade-off between neotissue growth and operating cost. Our method is tested against and outperforms the most common approach in literature, genetic algorithms, and shows its important real-world applicability to problems that combine black-box models with easy-to-quantify objectives like cost.
Details
Originalsprache | Englisch |
---|---|
Titel | Computer Aided Chemical Engineering |
Herausgeber (Verlag) | Elsevier Science B.V. |
Seiten | 2155-2160 |
Seitenumfang | 6 |
Publikationsstatus | Veröffentlicht - Okt. 2017 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Publikationsreihe
Reihe | Computer aided chemical engineering |
---|---|
Band | 40 |
ISSN | 1570-7946 |
Externe IDs
ORCID | /0000-0001-9430-8433/work/158768045 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Bayesian optimisation, black-box optimisation, bone neotissue engineering, multi-objective optimisation, tissue engineering