Bayesian image analysis with on-line confidence estimates and its application to microtubule tracking

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • J. Cardinale - , ETH Zurich (Autor:in)
  • A. Rauch - , ETH Zurich (Autor:in)
  • Y. Barral - , ETH Zurich (Autor:in)
  • G. Szèkely - , ETH Zurich (Autor:in)
  • I. F. Sbalzarini - , ETH Zurich (Autor:in)

Abstract

Automated analysis of fluorescence microscopy data relies on robust segmentation and tracking algorithms for sub-cellular structures in order to generate quantitative results. The accuracy of the image processing results is, however, frequently unknown or determined a priori on synthetic benchmark data. We present a particle filter framework based on Markov Chain Monte Carlo methods and adaptive annealing. Our algorithm provides on-line per-frame estimates of the detection and tracking confidence at run time. We validate the accuracy of the estimates and apply the algorithm to tracking microtubules in mitotic yeast cells. This is based on a likelihood function that accounts for the dominant noise sources in the imaging equipment. The confidence estimates provided by the present algorithm allow on-line control of the detection and tracking quality.

Details

OriginalspracheEnglisch
TitelProceedings - 2009 IEEE International Symposium on Biomedical Imaging
Herausgeber (Verlag)IEEE Xplore
Seiten1091-1094
Seitenumfang4
ISBN (Print)9781424439324
PublikationsstatusVeröffentlicht - 2009
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE International Symposium on Biomedical Imaging (ISBI)
ISSN1945-7928

Konferenz

Titel2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009
Dauer28 Juni - 1 Juli 2009
StadtBoston, MA
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0003-4414-4340/work/159608332

Schlagworte

Schlagwörter

  • Adaptive annealing, Confidence estimate, Microtubule, Particle filter, Tracking