Bandwidth controlled insulator-metal transition in BaFe2S3: A Mössbauer study under pressure

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Philipp Materne - , Argonne National Laboratory (Autor:in)
  • Wenli Bi - , Argonne National Laboratory, University of Illinois at Urbana-Champaign (Autor:in)
  • Jiyong Zhao - , Argonne National Laboratory (Autor:in)
  • Michael Yu Hu - , Argonne National Laboratory (Autor:in)
  • Maria Lourdes Amigó - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Silvia Seiro - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Saicharan Aswartham - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Bernd Büchner - , Professur für Experimentelle Festkörperphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Esen Ercan Alp - , Argonne National Laboratory (Autor:in)

Abstract

BaFe2S3 is a quasi-one-dimensional Mott insulator that orders antiferromagnetically below 117(5) K. The application of pressure induces a transition to a metallic state, and superconductivity emerges. The evolution of the magnetic behavior on increasing pressure has up to now been either studied indirectly by means of transport measurements, or by using local magnetic probes only in the low pressure region. Here, we investigate the magnetic properties of BaFe2S3 up to 9.9 GPa by means of synchrotron Fe57 Mössbauer spectroscopy experiments, providing the first local magnetic phase diagram. The magnetic ordering temperature increases up to 185(5) K at 7.5 GPa, and is fully suppressed at 9.9 GPa. The low-temperature magnetic hyperfine field is continuously reduced from 12.9 to 10.3 T between 1.4 and 9.1 GPa, followed by a sudden drop to zero at 9.9 GPa indicating a first-order phase transition. The pressure dependence of the magnetic order in BaFe2S3 can be qualitatively explained by a combination of a bandwidth-controlled insulator-metal transition as well as a pressure enhanced exchange interaction between Fe atoms and Fe3d-S3p hybridization.

Details

OriginalspracheEnglisch
Aufsatznummer020505
FachzeitschriftPhysical Review B
Jahrgang99
Ausgabenummer2
PublikationsstatusVeröffentlicht - 24 Jan. 2019
Peer-Review-StatusJa