Automotive Radar Processing with Neuromorphic Hardware: A Case Study from the KI-ASIC Project

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Radar sensors play an essential role for robust automated driving especially under harsh weather conditions. As more and more radar sensors with increased numbers of transmitter and receiver channels are integrated into cars, the compute load for radar signal processing increases, also because AI models are increasingly used. To counteract the associated rising energy demand, neuromorphic hardware that realizes brain-inspired spiking neural networks in silicon may be used for energy-efficient radar signal processing. Here, we show a case study from the German KI-ASIC project evaluating the use of the SpiNNaker2 neuromorphic chip for automotive radar processing. First, we implement three different variants of the CA-CFAR algorithm (in software, as convolutional network, as spiking neural network) on the SpiNNaker2 chip and compare them regarding latency, energy and memory usage. Second, we propose and implement a pipeline for radar object tracking and classification on a test car with radar sensor, neuromorphic chip and conventional computer as middleware. This work presents by far the most elaborated approach for automotive radar processing with neuromorphic hardware and provides useful insights for future work.

Details

OriginalspracheEnglisch
Titel2025 16th German Microwave Conference (GeMiC)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten630-633
Seitenumfang4
ISBN (elektronisch)978-3-9820397-4-9
ISBN (Print)979-8-3315-2179-0
PublikationsstatusVeröffentlicht - 19 März 2025
Peer-Review-StatusJa

Konferenz

Titel16th German Microwave Conference
KurztitelGeMiC 2025
Veranstaltungsnummer16
Dauer17 - 19 März 2025
Webseite
OrtTechnische Universität Dresden
StadtDresden
LandDeutschland

Externe IDs

Scopus 105007141559

Schlagworte

Schlagwörter

  • Automobiles, Hardware, Millimeter wave radar, Object tracking, Radar, Radar detection, Radar signal processing, Radar tracking, Sensors, Spiking neural networks, neuromorphic engineering, radar detection, advanced driver assistance systems, millimeter wave radar, radar signal processing, automotive electronics, spiking neural networks, object tracking