Automatic Individual Identification of Patterned Solitary Species Based on Unlabeled Video Data

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Vanessa Suessle - , Hochschule Darmstadt (Autor:in)
  • Mimi Arandjelovic - , Max Planck Institute for Evolutionary Anthropology, Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig (Autor:in)
  • Ammie K. Kalan - , University of Victoria BC (Autor:in)
  • Anthony Agbor - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Christophe Boesch - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Gregory Brazzola - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Tobias Deschner - , Universität Osnabrück (Autor:in)
  • Paula Dieguez - , Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig (Autor:in)
  • Anne Céline Granjon - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Hjalmar Kuehl - , Professur für Diversität der Säugetiere (gB Senckenberg), Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig, Senckenberg Gesellschaft für Naturforschung (Autor:in)
  • Anja Landsmann - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Juan Lapuente - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Nuria Maldonado - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Amelia Meier - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Zuzana Rockaiova - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Erin G. Wessling - , Harvard University, University of St Andrews (Autor:in)
  • Roman M. Wittig - , Institut des Sciences Cognitives Marc Jeannerod , Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (Autor:in)
  • Colleen T. Downs - , University of KwaZulu-Natal (Autor:in)
  • Andreas Weinmann - , Hochschule Darmstadt (Autor:in)
  • Elke Hergenroether - , Hochschule Darmstadt (Autor:in)

Abstract

The manual processing and analysis of videos from camera traps is time-consuming and includes several steps, ranging from the filtering of falsely triggered footage to identifying and re-identifying individuals. In this study, we developed a pipeline to automatically analyze videos from camera traps to identify individuals without requiring manual interaction. This pipeline applies to animal species with uniquely identifiable fur patterns and solitary behavior, such as leopards (Panthera pardus). We assumed that the same individual was seen throughout one triggered video sequence. With this assumption, multiple images could be assigned to an individual for the initial database filling without pre-labeling. The pipeline was based on well-established components from computer vision and deep learning, particularly convolutional neural networks (CNNs) and scale-invariant feature transform (SIFT) features. We augmented this basis by implementing additional components to substitute otherwise required human interactions. Based on the similarity between frames from the video material, clusters were formed that represented individuals bypassing the open set problem of the unknown total population. The pipeline was tested on a dataset of leopard videos collected by the Pan African Programme: The Cultured Chimpanzee (PanAf) and achieved a success rate of over 83% for correct matches between previously unknown individuals. The proposed pipeline can become a valuable tool for future conservation projects based on camera trap data, reducing the work of manual analysis for individual identification, when labeled data is unavailable.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-10
Seitenumfang10
FachzeitschriftJournal of WSCG
Jahrgang31
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • automatic pipeline, camera traps, CNNs, individual identification, open set problem, pattern matching, SIFT algorithm, wildlife conservation