Automatic Identification of Correlations in Large Amounts of Power Quality Data from Long-Term Measurement Campaigns
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Distribution networks face significant changes, like increase of renewables or large-scale introduction of electric vehicles. This has a significant impact on Power Quality (PQ) and consequently network operators install an increasing number of PQ instruments to monitor their networks. To analyse these large amounts of data in an efficient way, automatic data mining methods are required. This paper presents a method to identify correlations in the trend of different power quality parameters at the same or different sites. Such correlations can be used to identify general trends or causes of an observed behaviour. The method is applied to field measurements (3 years at 21 sites) taken in the network of State grid, one of the major Chinese network operators. The results show that similarity in trends does rarely exist between PQ parameters and between measurement sites.
Details
Originalsprache | Englisch |
---|---|
Titel | 2021 26th International Conference and Exhibition on Electricity Distribution (CIRED) |
Erscheinungsort | Online Conference, |
Herausgeber (Verlag) | Institution of Engineering and Technology |
Seiten | 911-915 |
Seitenumfang | 5 |
Band | 2021 |
Auflage | 6 |
ISBN (Print) | 978-1-83953-591-8 |
Publikationsstatus | Veröffentlicht - 2021 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0001-5951-2033/work/142241878 |
---|---|
Scopus | 85174645981 |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- CORRELATION ANALYSIS, DATA MINING, POWER QUALITY, TIME SERIES ANALYSIS