Automatic classification of minimally invasive instruments based on endoscopic image sequences

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Stefanie Speidel - , Nationales Centrum für Tumorerkrankungen Dresden, Karlsruher Institut für Technologie (Autor:in)
  • Julia Benzko - , Karlsruher Institut für Technologie (Autor:in)
  • Sebastian Krappe - , Karlsruher Institut für Technologie (Autor:in)
  • Gunther Sudra - , Karlsruher Institut für Technologie (Autor:in)
  • Pedram Azad - , Karlsruher Institut für Technologie (Autor:in)
  • Beat Peter - (Autor:in)
  • Müller Stich - , Universität Heidelberg (Autor:in)
  • Carsten Gutt - , Universität Heidelberg (Autor:in)
  • Rüdiger Dillmann - , Karlsruher Institut für Technologie (Autor:in)

Abstract

Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for contextaware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

Details

OriginalspracheEnglisch
TitelMedical Imaging 2009
PublikationsstatusVeröffentlicht - 2009
Peer-Review-StatusJa

Publikationsreihe

ReiheProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Band7261
ISSN1605-7422

Konferenz

TitelMedical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging
Dauer8 - 10 Februar 2009
StadtLake Buena Vista, FL
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-4590-1908/work/163294184

Schlagworte

Schlagwörter

  • Abdominal procedures, Endoscopic procedures, Localization & tracking technologies, Segmentation