Automated Video-Based Approach for the Diagnosis of Tourette Syndrome

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ronja Schappert - , Universität zu Lübeck (Autor:in)
  • Julius Verrel - , Universität zu Lübeck (Autor:in)
  • Nele Sophie Brügge - , Universität zu Lübeck, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) (Autor:in)
  • Frédéric Li - , Universität zu Lübeck (Autor:in)
  • Theresa Paulus - , Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Campus Lübeck (Autor:in)
  • Leonie Becker - , Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Campus Lübeck (Autor:in)
  • Tobias Bäumer - , Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Campus Lübeck (Autor:in)
  • Christian Beste - , Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Shandong Normal University (Autor:in)
  • Veit Roessner - , Klinik und Poliklinik für Kinder- und Jugendpsychiatrie (Autor:in)
  • Sebastian Fudickar - , Universität zu Lübeck (Autor:in)
  • Alexander Münchau - , Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Campus Lübeck (Autor:in)

Abstract

Background: The occurrence of tics is the main basis for the diagnosis of Gilles de la Tourette syndrome (GTS). Video-based tic assessments are time consuming. Objective: The aim was to assess the potential of automated video-based tic detection for discriminating between videos of adults with GTS and healthy control (HC) participants. Methods: The quantity and temporal structure of automatically detected tics/extra movements in videos from adults with GTS (107 videos from 42 participants) and matched HCs were used to classify videos using cross-validated logistic regression. Results: Videos were classified with high accuracy both from the quantity of tics (balanced accuracy of 87.9%) and the number of tic clusters (90.2%). Logistic regression prediction probability provides a graded measure of diagnostic confidence. Expert review of about 25% of lower-confidence predictions could ensure an overall classification accuracy above 95%. Conclusions: Automated video-based methods have a great potential to support quantitative assessment and clinical decision-making in tic disorders.

Details

OriginalspracheEnglisch
Seiten (von - bis)1136-1140
Seitenumfang5
FachzeitschriftMovement disorders clinical practice
Jahrgang11
Ausgabenummer9
Frühes Online-Datum7 Juli 2024
PublikationsstatusVeröffentlicht - Sept. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2989-9561/work/169643245

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • automated, tic detection, Tourette, video based