Automated remote speech-based testing of individuals with cognitive decline: Bayesian agreement of transcription accuracy

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexandra König - , Centre Hospitalier Universitaire (CHU) de Nice (Autor:in)
  • Stefanie Köhler - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Rostock/Greifswald (Autor:in)
  • Johannes Tröger - , Centre Hospitalier Universitaire (CHU) de Nice (Autor:in)
  • Emrah Düzel - , University College London (Autor:in)
  • Wenzel Glanz - , Universitätsklinikum Magdeburg (Autor:in)
  • Michaela Butryn - , Universitätsklinikum Magdeburg (Autor:in)
  • Elisa Mallick - , Centre Hospitalier Universitaire (CHU) de Nice (Autor:in)
  • Josef Priller - , University of Edinburgh (Autor:in)
  • Slawek Altenstein - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Annika Spottke - , Universitätsklinikum Bonn (Autor:in)
  • Okka Kimmich - , Universitätsklinikum Bonn (Autor:in)
  • Björn Falkenburger - , Klinik und Poliklinik für Neurologie, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Dresden (Autor:in)
  • Antje Osterrath - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Dresden, Klinik und Poliklinik für Neurologie (Autor:in)
  • Jens Wiltfang - , Universitätsmedizin Göttingen (Autor:in)
  • Claudia Bartels - , Universitätsmedizin Göttingen (Autor:in)
  • Ingo Kilimann - , Universitätsmedizin Rostock (Autor:in)
  • Christoph Laske - , Universitätsklinikum Tübingen (Autor:in)
  • Matthias H. Munk - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Tübingen (Autor:in)
  • Sandra Roeske - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Bonn (Autor:in)
  • Ingo Frommann - , Universitätsklinikum Bonn (Autor:in)
  • Daniel C. Hoffmann - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Bonn (Autor:in)
  • Frank Jessen - , Universitätsklinikum Köln (Autor:in)
  • Michael Wagner - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Bonn, Universitätsklinikum Tübingen (Autor:in)
  • Nicklas Linz - , Centre Hospitalier Universitaire (CHU) de Nice (Autor:in)
  • Stefan Teipel - , Universitätsmedizin Rostock (Autor:in)

Abstract

INTRODUCTION: We investigated the agreement between automated and gold-standard manual transcriptions of telephone chatbot-based semantic verbal fluency testing.

METHODS: We examined 78 cases from the Screening over Speech in Unselected Populations for Clinical Trials in AD (PROSPECT-AD) study, including cognitively normal individuals and individuals with subjective cognitive decline, mild cognitive impairment, and dementia. We used Bayesian Bland-Altman analysis of word count and the qualitative features of semantic cluster size, cluster switches, and word frequencies.

RESULTS: We found high levels of agreement for word count, with a 93% probability of a newly observed difference being below the minimally important difference. The qualitative features had fair levels of agreement. Word count reached high levels of discrimination between cognitively impaired and unimpaired individuals, regardless of transcription mode.

DISCUSSION: Our results support the use of automated speech recognition particularly for the assessment of quantitative speech features, even when using data from telephone calls with cognitively impaired individuals in their homes.

HIGHLIGHTS: High levels of agreement were found between automated and gold-standard manual transcriptions of telephone chatbot-based semantic verbal fluency testing, particularly for word count.The qualitative features had fair levels of agreement.Word count reached high levels of discrimination between cognitively impaired and unimpaired individuals, regardless of transcription mode.Automated speech recognition for the assessment of quantitative and qualitative speech features, even when using data from telephone calls with cognitively impaired individuals in their homes, seems feasible and reliable.

Details

OriginalspracheEnglisch
Aufsatznummere70011
FachzeitschriftAlzheimer's & dementia
Jahrgang16
Ausgabenummer4
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC11456616
Scopus 85205960672
ORCID /0000-0002-2387-526X/work/176343350

Schlagworte