Automated Motor Tic Detection: A Machine Learning Approach
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Background: Video-based tic detection and scoring is useful to independently and objectively assess tic frequency and severity in patients with Tourette syndrome. In trained raters, interrater reliability is good. However, video ratings are time-consuming and cumbersome, particularly in large-scale studies. Therefore, we developed two machine learning (ML) algorithms for automatic tic detection. Objective: The aim of this study was to evaluate the performances of state-of-the-art ML approaches for automatic video-based tic detection in patients with Tourette syndrome. Methods: We used 64 videos of n = 35 patients with Tourette syndrome. The data of six subjects (15 videos with ratings) were used as a validation set for hyperparameter optimization. For the binary classification task to distinguish between tic and no-tic segments, we established two different supervised learning approaches. First, we manually extracted features based on landmarks, which served as input for a Random Forest classifier (Random Forest). Second, a fully automated deep learning approach was used, where regions of interest in video snippets were input to a convolutional neural network (deep neural network). Results: Tic detection F1 scores (and accuracy) were 82.0% (88.4%) in the Random Forest and 79.5% (88.5%) in the deep neural network approach. Conclusions: ML algorithms for automatic tic detection based on video recordings are feasible and reliable and could thus become a valuable assessment tool, for example, for objective tic measurements in clinical trials. ML algorithms might also be useful for the differential diagnosis of tics.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1327-1335 |
Seitenumfang | 9 |
Fachzeitschrift | Movement disorders |
Jahrgang | 38 (2023) |
Ausgabenummer | 7 |
Publikationsstatus | Veröffentlicht - 11 Mai 2023 |
Peer-Review-Status | Ja |
Externe IDs
PubMed | 37166278 |
---|---|
ORCID | /0000-0002-2989-9561/work/146788813 |
WOS | 000985902300001 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- deep neural networks, Face Mesh, machine learning, Random Forest, tic detection, Tourette syndrome, Tic detection, Deep neural networks, Machine learning, Tics/diagnosis, Reproducibility of Results, Humans, Tourette Syndrome/diagnosis, Machine Learning, Tic Disorders/diagnosis