Auditory Anomaly Detection using Recurrent Spiking Neural Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Brain-inspired networks promise capabilities of achieving high computational efficacy with low energy footprint. Auditory perception systems are resource constrained when deployed on low power edge AI devices. Hence, we employ spiking neural networks (SNNs) for auditory scene analysis, specifically targeting temporal detection of anomaly cues particularly siren sounds. We generate artificial audio sequences from a publicly available dataset containing various siren and noise sounds. We train small-scale recurrent SNNs with leaky-integrate-and-fire (LIF) neurons in the hidden layer and achieve accurate predictions with precious few parameters. Further, we provide a baseline for conventional RNNs of similar network topology on the same task. With comparable accuracy, reduced parameter, and sparse spiking activity in hidden layer in contrast to conventional methods, we found bio-inspired approach realized using SNNs to be promising in solving the time-series auditory anomaly detection task.

Details

OriginalspracheEnglisch
Titel2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS)
Herausgeber (Verlag)IEEE
Seiten278-281
Seitenumfang4
ISBN (elektronisch)9798350383638
ISBN (Print)979-8-3503-8364-5
PublikationsstatusVeröffentlicht - 25 Apr. 2024
Peer-Review-StatusJa

Konferenz

Titel6th IEEE International Conference on Artificial Intelligence Circuits and Systems
UntertitelCircuits and Systems for Neuro-Inspired, Cognitive, and Learning Abilities
KurztitelIEEE AICAS 2024
Veranstaltungsnummer6
Dauer22 - 25 April 2024
Webseite
OrtKhalifa University
StadtAbu Dhabi
LandVereinigte Arabische Emirate

Externe IDs

Scopus 85199898459

Schlagworte

Schlagwörter

  • Accuracy, Image analysis, Network topology, Neuromorphics, Neurons, Noise, Spiking neural networks