Attention-driven PCM-based In-Memory Computing for Smart Vision Systems

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

As demand grows for efficient edge computing systems, innovative architectures are crucial for achieving low-power, high-density data processing in resource-constrained environments. Compressed sensing (CS) and Analog In-Memory Computing (AIMC) offer promising pathways to meet these needs by enabling localized, efficient feature extraction and inference. This paper introduces an energy-efficient on-chip system that integrates CS with AIMC based on Phase-Change Memory (PCM) devices to enable robust feature extraction and inference. The proposed architecture employs CS for dimensionality reduction at the sensor level, generating low-dimensional feature vectors directly fed into a single-layer artificial neural network (ANN) implemented on PCM crossbars. To address inherent hardware non-idealities, we utilize hardware-aware (HWA) training combined with an attention-based regularization mechanism, improving both inference stability and drift resilience over extended periods. Performance evaluation on a face recognition task demonstrates that attention-enhanced HWA training effectively mitigates overfitting and maintains model accuracy under PCM drift conditions, highlighting the system's suitability for edge computing applications requiring low power consumption and long-term reliability.

Details

OriginalspracheEnglisch
TitelISCAS 2025 - IEEE International Symposium on Circuits and Systems, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten1-5
ISBN (elektronisch)979-8-3503-5683-0
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings - IEEE International Symposium on Circuits and Systems
ISSN0271-4310

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2025
UntertitelTechnology Disruption and Society
KurztitelISCAS 2025
Dauer25 - 28 Mai 2025
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtInterContinental London The O2
StadtLondon
LandGroßbritannien/Vereinigtes Königreich

Externe IDs

ORCID /0000-0001-7436-0103/work/189284753
ORCID /0000-0002-2367-5567/work/189290165

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Analog In-Memory Computing, Attention Mechanism, Compressed Sensing, neural network, PCM, regularization