Attention-driven PCM-based In-Memory Computing for Smart Vision Systems
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
As demand grows for efficient edge computing systems, innovative architectures are crucial for achieving low-power, high-density data processing in resource-constrained environments. Compressed sensing (CS) and Analog In-Memory Computing (AIMC) offer promising pathways to meet these needs by enabling localized, efficient feature extraction and inference. This paper introduces an energy-efficient on-chip system that integrates CS with AIMC based on Phase-Change Memory (PCM) devices to enable robust feature extraction and inference. The proposed architecture employs CS for dimensionality reduction at the sensor level, generating low-dimensional feature vectors directly fed into a single-layer artificial neural network (ANN) implemented on PCM crossbars. To address inherent hardware non-idealities, we utilize hardware-aware (HWA) training combined with an attention-based regularization mechanism, improving both inference stability and drift resilience over extended periods. Performance evaluation on a face recognition task demonstrates that attention-enhanced HWA training effectively mitigates overfitting and maintains model accuracy under PCM drift conditions, highlighting the system's suitability for edge computing applications requiring low power consumption and long-term reliability.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | ISCAS 2025 - IEEE International Symposium on Circuits and Systems, Proceedings |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seiten | 1-5 |
| ISBN (elektronisch) | 979-8-3503-5683-0 |
| Publikationsstatus | Veröffentlicht - 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Proceedings - IEEE International Symposium on Circuits and Systems |
|---|---|
| ISSN | 0271-4310 |
Konferenz
| Titel | IEEE International Symposium on Circuits and Systems 2025 |
|---|---|
| Untertitel | Technology Disruption and Society |
| Kurztitel | ISCAS 2025 |
| Dauer | 25 - 28 Mai 2025 |
| Webseite | |
| Bekanntheitsgrad | Internationale Veranstaltung |
| Ort | InterContinental London The O2 |
| Stadt | London |
| Land | Großbritannien/Vereinigtes Königreich |
Externe IDs
| ORCID | /0000-0001-7436-0103/work/189284753 |
|---|---|
| ORCID | /0000-0002-2367-5567/work/189290165 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Analog In-Memory Computing, Attention Mechanism, Compressed Sensing, neural network, PCM, regularization