Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Wanzhen Zheng - , Zhejiang University (Autor:in)
  • Jian Yang - , Zhejiang University (Autor:in)
  • Hengquan Chen - , Zhejiang University (Autor:in)
  • Yang Hou - , Zhejiang University (Autor:in)
  • Qi Wang - , Southern University of Science and Technology (Autor:in)
  • Meng Gu - , Southern University of Science and Technology (Autor:in)
  • Feng He - , Zhejiang University of Technology (Autor:in)
  • Ying Xia - , Central China Normal University (Autor:in)
  • Zheng Xia - , Zhejiang University (Autor:in)
  • Zhongjian Li - , Zhejiang University (Autor:in)
  • Bin Yang - , Zhejiang University (Autor:in)
  • Lecheng Lei - , Zhejiang University (Autor:in)
  • Chris Yuan - , Case Western Reserve University (Autor:in)
  • Qinggang He - , Zhejiang University (Autor:in)
  • Ming Qiu - , Central China Normal University (Autor:in)
  • Xinliang Feng - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)

Abstract

Electrocatalytic reduction of carbon dioxide (CO2ER) in rechargeable Zn–CO2 battery still remains a great challenge. Herein, a highly efficient CO2ER electrocatalyst composed of coordinatively unsaturated single-atom copper coordinated with nitrogen sites anchored into graphene matrix (Cu–N2/GN) is reported. Benefitting from the unsaturated coordination environment and atomic dispersion, the ultrathin Cu–N2/GN nanosheets exhibit a high CO2ER activity and selectivity for CO production with an onset potential of −0.33 V and the maximum Faradaic efficiency of 81% at a low potential of −0.50 V, superior to the previously reported atomically dispersed Cu–N anchored on carbon materials. Experimental results manifest the highly exposed and atomically dispersed Cu–N2 active sites in graphene framework where the Cu species are coordinated by two N atoms. Theoretical calculations demonstrate that the optimized reaction free energy for Cu–N2 sites to capture CO2 promote the adsorption of CO2 molecules on Cu–N2 sites; meanwhile, the short bond lengths of Cu–N2 sites accelerate the electron transfer from Cu–N2 sites to *CO2, thus efficiently boosting the *COOH generation and CO2ER performance. A designed rechargeable Zn–CO2 battery with Cu–N2/GN nanosheets deliver a peak power density of 0.6 mW cm−2, and the charge process of battery can be driven by natural solar energy.

Details

OriginalspracheEnglisch
Aufsatznummer1907658
FachzeitschriftAdvanced functional materials
Jahrgang30
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1 Jan. 2020
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • active sites, atomic dispersion Cu–N, CO electroreduction, unsaturated coordination, Zn–CO battery