Atomic layer deposition of dielectric Y2O3 thin films from a homoleptic yttrium formamidinate precursor and water
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We report the application of tris(N,N′-diisopropyl-formamidinato)yttrium(iii) [Y(DPfAMD)3] as a promising precursor in a water-assisted thermal atomic layer deposition (ALD) process for the fabrication of high quality Y2O3 thin films in a wide temperature range of 150 °C to 325 °C. This precursor exhibits distinct advantages such as improved chemical and thermal stability over the existing Y2O3 ALD precursors including the homoleptic and closely related yttrium tris-amidinate [Y(DPAMD)3] and tris-guanidinate [Y(DPDMG)3], leading to excellent thin film characteristics. Smooth, homogeneous, and polycrystalline (fcc) Y2O3 thin films were deposited at 300 °C with a growth rate of 1.36 Å per cycle. At this temperature, contamination levels of C and N were under the detectable limits of nuclear reaction analysis (NRA), while X-ray photoelectron spectroscopy (XPS) measurements confirmed the high purity and stoichiometry of the thin films. From the electrical characterization of metal-insulator-semiconductor (MIS) devices, a permittivity of 13.9 at 1 MHz could be obtained, while the electric breakdown field is in the range of 4.2 and 6.1 MV cm-1. Furthermore, an interface trap density of 1.25 × 1011 cm-2 and low leakage current density around 10-7 A cm-2 at 2 MV cm-1 are determined, which satisfies the requirements of gate oxides for complementary metal-oxide-semiconductor (CMOS) based applications.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2565-2574 |
Seitenumfang | 10 |
Fachzeitschrift | RSC advances |
Jahrgang | 11 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 12 Jan. 2021 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |