Asymptotic Behavior of Discrete Fractional Systems

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

  • Adam Czornik - , Schlesische Technische Universität (Autor:in)
  • Pham The Anh - , Le Quy Don Technical University (Autor:in)
  • Artur Babiarz - , Schlesische Technische Universität (Autor:in)
  • Stefan Siegmund - , Professur für Dynamik und Steuerung (Autor:in)

Abstract

This work comprehensively describes and extends the results on asymptotic properties of linear discrete time-varying fractional order systems with Caputo and Riemann-Liouville forward and backward difference operators. In our considerations we take into account various definitions from the literature of fractional difference operators and we compare the dynamic properties of the corresponding systems. These equations are studied by converting them to the corresponding Volterra convolution equations. The main results are: explicit formulas for solutions, results on asymptotic stability, rates of growth or decay of solutions and solution separation. The work also formulates a number of open questions that may be the subject of future research.

Details

OriginalspracheEnglisch
TitelFractional Dynamical Systems
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten135-173
Seitenumfang39
ISBN (elektronisch)978-3-030-89972-1
ISBN (Print)978-3-030-89971-4, 978-3-030-89974-5
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheStudies in Systems, Decision and Control
Band402
ISSN2198-4182

Externe IDs

ORCID /0000-0003-0967-6747/work/173054608