Asymmetry in repeated isotropic rotations

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Random operators constitute fundamental building blocks of models of complex systems yet are far from fully understood. Here, we explain an asymmetry emerging upon repeating identical isotropic (uniformly random) operations. Specifically, in two dimensions, repeating an isotropic rotation twice maps a given point on the two-dimensional unit sphere (the unit circle) uniformly at random to any point on the unit sphere, reflecting a statistical symmetry as expected. In contrast, in three and higher dimensions, a point is mapped more often closer to the original point than a uniform distribution predicts. Curiously, in the limit of the dimension d→∞, a symmetric distribution is approached again. We intuitively explain the emergence of this asymmetry and why it disappears in higher dimensions by disentangling isotropic rotations into a sequence of partial actions. The asymmetry emerges in two qualitatively different forms and for a wide range of general random operations relevant in complex systems modeling, including repeated continuous and discrete rotations, roto-reflections and general orthogonal transformations.

Details

OriginalspracheEnglisch
Aufsatznummer023012
FachzeitschriftPhysical Review Research
Jahrgang1
Ausgabenummer2
PublikationsstatusVeröffentlicht - 10 Sept. 2019
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-5956-3137/work/142242416

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte