Approximation of the invariant measure of stable SDEs by an Euler–Maruyama scheme
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We propose two Euler–Maruyama (EM) type numerical schemes in order to approximate the invariant measure of a stochastic differential equation (SDE) driven by an α-stable Lévy process (1<α<2): an approximation scheme with the α-stable distributed noise and a further scheme with Pareto-distributed noise. Using a discrete version of Duhamel's principle and Bismut's formula in Malliavin calculus, we prove that the error bounds in Wasserstein-1 distance are in the order of η1−ϵ and [Formula presented], respectively, where ϵ∈(0,1) is arbitrary and η is the step size of the approximation schemes. For the Pareto-driven scheme, an explicit calculation for Ornstein–Uhlenbeck α-stable process shows that the rate [Formula presented] cannot be improved.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 136-167 |
Seitenumfang | 32 |
Fachzeitschrift | Stochastic processes and their applications |
Jahrgang | 163 |
Publikationsstatus | Veröffentlicht - Sept. 2023 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Convergence rate, Euler–Maruyama method, Invariant measure, Wasserstein distance