Approximation Fixpoint Theory as a Unifying Framework for Fuzzy Logic Programming Semantics

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

Abstract

Fuzzy logic programming is an established approach for reasoning under uncertainty. Several semantics from classical, two-valued logic programming have been generalized to the case of fuzzy logic programs. In this paper, we show that two of the most prominent classical semantics, namely the stable model and the well-founded semantics, can be reconstructed within the general framework of approximation fixpoint theory (AFT). This not only widens the scope of AFT from two-to many-valued logics, but allows a wide range of existing AFT results to be applied to fuzzy logic programming. As first examples of such applications, we clarify the formal relationship between existing semantics, generalize the notion of stratification from classical to fuzzy logic programs, and devise “more precise” variants of the semantics.

Details

OriginalspracheEnglisch
Seiten (von - bis)4544-4552
Seitenumfang9
FachzeitschriftIJCAI International Joint Conference on Artificial Intelligence
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Konferenz

Titel34th Internationa Joint Conference on Artificial Intelligence
KurztitelIJCAI 2025
Veranstaltungsnummer34
Dauer16 - 22 August 2025
Webseite
OrtPalais des congrès
StadtMontreal
LandKanada

Schlagworte

ASJC Scopus Sachgebiete