Anomaly Detection in Chemical Processes with Semantic Knowledge Graphs: An Approach to Reduce Cause-Effect Diagrams
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
When operators and users face an unexpected problem regarding the process, it would be easier and less time-consuming for them to narrow down the possible causes that result in the final issue. In this study, a pilot modular plant with two Process Equipment Assemblies was considered as the use case. At first, a knowledge graph representing this process was developed in Protégé software, which semantically described not only the equipment type and connectivity but also the behavior of the process. Then, the knowledge graph was imported to Python, where the sensor data were placed in their particular position in the knowledge graph. Afterward, an algorithm was developed to query the knowledge graph and verify if the relevant equipment was functioning correctly or not. Our results indicate that this approach can reduce the cause-effect diagrams in almost all scenarios. Nonetheless, there are situations where further sensor data (e.g., the temperature in a tank) is required for the algorithm to decide.
Details
Originalsprache | Englisch |
---|---|
Titel | 33rd European Symposium on Computer Aided Process Engineering |
Seitenumfang | 6 |
Publikationsstatus | Veröffentlicht - Jan. 2023 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-3753-3778/work/142238508 |
---|---|
ORCID | /0000-0001-5165-4459/work/142248312 |
Scopus | 85166933877 |
Mendeley | 12f29a87-628f-3688-8742-9b4c65f483aa |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
- Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
- Informationssysteme, Prozess- und Wissensmanagement
- Automatisierungstechnik, Regelungssysteme, Robotik, Mechatronik, Cyber Physical Systems
- Softwaretechnik und Programmiersprachen
- Betriebs-, Kommunikations-, Datenbank- und verteilte Systeme
- Arbeitswissenschaft, Ergonomie, Mensch-Maschine-Systeme
- Chemische und Thermische Verfahrenstechnik
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
Schlagwörter
- Decision making, Process behavior, Cause-effect graphs, Semantic knowledge graphs