Analyzing multidimensional neural activity via CNN-UM

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • V. Gál - , Universitätsklinikum Frankfurt (Autor:in)
  • S. Grün - , Max Planck Institute for Brain Research (Autor:in)
  • R. Tetzlaff - , Universitätsklinikum Frankfurt (Autor:in)

Abstract

In this paper we show that CNN-UM is an excellent tool for analyzing time series of multidimensional binary signals. The developed algorithm is dedicated to process electrophysiological multi-neuron recordings: our aim is to find specific multidimensional activity patterns, which may reflect higher order functional cell-assemblies. The analysis consists of two parts: the occurrences of different patterns are first counted, then the statistical significance of each occurrence frequency is calculated separately.

Details

OriginalspracheEnglisch
TitelProceedings of the 7th IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA 2002
Redakteure/-innenRonald Tetzlaff
Herausgeber (Verlag)IEEE, New York [u. a.]
Seiten243-250
Seitenumfang8
ISBN (elektronisch)981238121X
PublikationsstatusVeröffentlicht - 2002
Peer-Review-StatusJa
Extern publiziertJa

Workshop

Titel7th IEEE International Workshop on Cellular Neural Networks and their Applications
KurztitelCNNA 2002
Veranstaltungsnummer7
Dauer22 - 24 Juli 2002
BekanntheitsgradInternationale Veranstaltung
StadtFrankfurt am Main
LandDeutschland

Externe IDs

ORCID /0000-0001-7436-0103/work/142240271

Schlagworte

Schlagwörter

  • Cellular neural networks, Electrodes, Electrophysiology, Frequency synchronization, Multidimensional systems, Neurons, Neurophysiology, Physics, Signal analysis, Time series analysis