Analyzing multidimensional neural activity via CNN-UM
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we show that CNN-UM is an excellent tool for analyzing time series of multidimensional binary signals. The developed algorithm is dedicated to process electrophysiological multi-neuron recordings: our aim is to find specific multidimensional activity patterns, which may reflect higher order functional cell-assemblies. The analysis consists of two parts: the occurrences of different patterns are first counted, then the statistical significance of each occurrence frequency is calculated separately.
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 7th IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA 2002 |
Redakteure/-innen | Ronald Tetzlaff |
Herausgeber (Verlag) | IEEE, New York [u. a.] |
Seiten | 243-250 |
Seitenumfang | 8 |
ISBN (elektronisch) | 981238121X |
Publikationsstatus | Veröffentlicht - 2002 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Workshop
Titel | 7th IEEE International Workshop on Cellular Neural Networks and their Applications |
---|---|
Kurztitel | CNNA 2002 |
Veranstaltungsnummer | 7 |
Dauer | 22 - 24 Juli 2002 |
Bekanntheitsgrad | Internationale Veranstaltung |
Stadt | Frankfurt am Main |
Land | Deutschland |
Externe IDs
ORCID | /0000-0001-7436-0103/work/142240271 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Cellular neural networks, Electrodes, Electrophysiology, Frequency synchronization, Multidimensional systems, Neurons, Neurophysiology, Physics, Signal analysis, Time series analysis