Analyzing Effective Connectivity with EEG and MEG
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
Developments in M/EEG analysis allows for models that are sophisticated enough to capture the full richness of the data. This chapter focuses on dynamic causal modeling (DCM) for M/EEG, which entails the inversion of informed spatiotemporal models of observed responses. The idea is to model condition-specific responses over channels and peristimulus time with the same model, where the differences among conditions are explained by changes in only a few key parameters. The face and predictive validity of DCM have been established, which makes it a potentially useful tool for group studies.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Simultaneous EEG and fMRI |
| Herausgeber (Verlag) | Oxford University Press |
| Band | 9780195372731 |
| ISBN (elektronisch) | 9780199776283 |
| ISBN (Print) | 9780195372731 |
| Publikationsstatus | Veröffentlicht - 1 Mai 2010 |
| Peer-Review-Status | Ja |
| Extern publiziert | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Bayesian approach, Dynamic causal modeling, Electroencephalography, Magnetoencephalography