Analyzing Effective Connectivity with EEG and MEG
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
Developments in M/EEG analysis allows for models that are sophisticated enough to capture the full richness of the data. This chapter focuses on dynamic causal modeling (DCM) for M/EEG, which entails the inversion of informed spatiotemporal models of observed responses. The idea is to model condition-specific responses over channels and peristimulus time with the same model, where the differences among conditions are explained by changes in only a few key parameters. The face and predictive validity of DCM have been established, which makes it a potentially useful tool for group studies.
Details
Originalsprache | Englisch |
---|---|
Titel | Simultaneous EEG and fMRI |
Herausgeber (Verlag) | Oxford University Press |
Band | 9780195372731 |
ISBN (elektronisch) | 9780199776283 |
ISBN (Print) | 9780195372731 |
Publikationsstatus | Veröffentlicht - 1 Mai 2010 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Bayesian approach, Dynamic causal modeling, Electroencephalography, Magnetoencephalography