Analyzing Continuous Ks-Anonymization for Smart Meter Data

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Data anonymization is crucial to allow the widespread adoption of some technologies, such as smart meters. However, anonymization techniques should be evaluated in the context of a dataset to make meaningful statements about their eligibility for a particular use case. In this paper, we therefore analyze the suitability of continuous ks-anonymization with CASTLE for data streams generated by smart meters. We compare CASTLE ’s continuous, piecewise ks-anonymization with a global process in which all data is known at once, based on metrics like information loss and properties of the sensitive attribute. Our results suggest that continuous ks-anonymization of smart meter data is reasonable and ensures privacy while having comparably low utility loss.

Details

OriginalspracheEnglisch
TitelComputer Security. ESORICS 2023 International Workshops - CyberICS, DPM, CBT, and SECPRE, 2023, Revised Selected Papers
Redakteure/-innenSokratis Katsikas, Frédéric Cuppens, Nora Cuppens-Boulahia, Costas Lambrinoudakis, Joaquin Garcia-Alfaro, Guillermo Navarro-Arribas, Pantaleone Nespoli, Christos Kalloniatis, John Mylopoulos, Annie Antón, Stefanos Gritzalis
Seiten272-282
Seitenumfang11
ISBN (elektronisch)978-3-031-54204-6
PublikationsstatusVeröffentlicht - Sept. 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science
Band14398
ISSN0302-9743

Externe IDs

Scopus 85187776866

Schlagworte