Analyzing Carrier Density and Hall Mobility in Impurity-Free Silicon Virtually Doped by External Defect Placement

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Soundarya Nagarajan - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Ingmar Ratschinski - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Stefan Schmult - , Professur für Nanoelektronik (Autor:in)
  • Steffen Wirth - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Dirk König - , Australian National University, Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Daniel Hiller - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Jens Trommer - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)

Abstract

Impurity doping at the nanoscale for silicon is becoming less efficient with conventional techniques. Here, an alternative virtual doping method is presented for silicon that can achieve an equivalent carrier density while addressing the primary limitations of traditional doping methods. The doping for silicon is carried out by placing aluminum-induced acceptor states externally in a silicon dioxide dielectric shell. This technique can be referred to as direct modulation doping. The resistivity, carrier density, and mobility are investigated by Hall effect measurements to characterize the carrier transport using the new doping method. The results thereof are compared with carrier transport analysis of conventionally doped silicon at room-temperature, demonstrating a 100% increase in carrier mobility at equal carrier density. The sheet density of hole carriers in silicon due to modulation doping remains nearly constant, ≈4.7 × 1012 cm−2 over a wide temperature range from 300 down to 2 K, proving that modulation-doped devices do not undergo carrier freeze-out at cryogenic temperatures. In addition, a mobility enhancement is demonstrated with an increase from 89 cm2 Vs−1 at 300 K to 227 cm2 Vs−1 at 10 K, highlighting the benefits of the new method for creating emerging nanoscale electronic devices or peripheral cryo-electronics to quantum computing.

Details

OriginalspracheEnglisch
Aufsatznummer2415230
FachzeitschriftAdvanced functional materials
Jahrgang35
Ausgabenummer7
PublikationsstatusVeröffentlicht - 12 Feb. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-3814-0378/work/180371982

Schlagworte

Schlagwörter

  • carrier density, carrier freeze-out, cryogenic electronics, Hall effect, mobility, modulation doped silicon-based heterostructure, quantum interfaces, scattering mechanisms