Analysis of Multidimensional Neural Activity Via CNN-UM
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we show that the Cellular Nonlinear Network Universal Machine (CNN-UM) is an excellent tool for analyzing time series of multidimensional binary signals. The developed algorithm is dedicated to process electrophysiological multi-neuron recordings: our aim is to find specific multidimensional activity patterns, which may reflect higher order functional cell-assemblies. The analysis consists of two parts: first, the occurrences of different patterns are counted, then the statistical significance of each occurrence frequency is calculated separately.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 479-487 |
| Seitenumfang | 9 |
| Fachzeitschrift | International Journal of Neural Systems |
| Jahrgang | 13 |
| Ausgabenummer | 6 |
| Publikationsstatus | Veröffentlicht - 8 Dez. 2003 |
| Peer-Review-Status | Ja |
| Extern publiziert | Ja |
Externe IDs
| PubMed | 15031856 |
|---|---|
| ORCID | /0000-0001-7436-0103/work/173513959 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- CNN, neural firing patterns, synchronization