Analysis of Multidimensional Neural Activity Via CNN-UM

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

In this paper we show that the Cellular Nonlinear Network Universal Machine (CNN-UM) is an excellent tool for analyzing time series of multidimensional binary signals. The developed algorithm is dedicated to process electrophysiological multi-neuron recordings: our aim is to find specific multidimensional activity patterns, which may reflect higher order functional cell-assemblies. The analysis consists of two parts: first, the occurrences of different patterns are counted, then the statistical significance of each occurrence frequency is calculated separately.

Details

OriginalspracheEnglisch
Seiten (von - bis)479-487
Seitenumfang9
FachzeitschriftInternational Journal of Neural Systems
Jahrgang13
Ausgabenummer6
PublikationsstatusVeröffentlicht - 8 Dez. 2003
Peer-Review-StatusJa

Externe IDs

PubMed 15031856
ORCID /0000-0001-7436-0103/work/173513959

Schlagworte

Schlagwörter

  • CNN, neural firing patterns, synchronization