Analysis of fMRI time-series by entropy measures.
Publikation: Beitrag in Fachzeitschrift › Übersichtsartikel (Review) › Beigetragen › Begutachtung
Beitragende
Abstract
Entropy is a measure of information content or complexity. Information-theoretic modeling has been successfully used in various biological data analyses including functional magnetic resonance (fMRI). Several studies have tested and evaluated entropy measures on simulated dataseis and real fMRI data. The efficiency of entropy algorithms has been compared to classical methods based on the linear model. Here we explain and summarize entropy algorithms that have been used in fMRI analysis, their advantages over classical methods and their potential use in event-related and block design fMRI.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 471-476 |
Seitenumfang | 6 |
Fachzeitschrift | Neuroendocrinology Letters |
Jahrgang | 33 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 2012 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
Scopus | 84869219113 |
---|---|
PubMed | 23090262 |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Approximate entropy, Block design, Brain, Computer simulation, Event related design, Humans, Information entropy, Magnetic resonance imaging, Methods, Mutual information, Neuroimaging, Resting state