Analysis of fMRI time-series by entropy measures.

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Pavol Mikoláš - , Karlsuniversität Prag (Autor:in)
  • Jan Vyhnánek - , Karlsuniversität Prag (Autor:in)
  • Antonín Škoch - , Institute for Clinical and Experimental Medicine (Autor:in)
  • Jiří Horáček - , Karlsuniversität Prag (Autor:in)

Abstract

Entropy is a measure of information content or complexity. Information-theoretic modeling has been successfully used in various biological data analyses including functional magnetic resonance (fMRI). Several studies have tested and evaluated entropy measures on simulated dataseis and real fMRI data. The efficiency of entropy algorithms has been compared to classical methods based on the linear model. Here we explain and summarize entropy algorithms that have been used in fMRI analysis, their advantages over classical methods and their potential use in event-related and block design fMRI.

Details

OriginalspracheEnglisch
Seiten (von - bis)471-476
Seitenumfang6
FachzeitschriftNeuroendocrinology Letters
Jahrgang33
Ausgabenummer5
PublikationsstatusVeröffentlicht - 2012
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 84869219113
PubMed 23090262

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Approximate entropy, Block design, Brain, Computer simulation, Event related design, Humans, Information entropy, Magnetic resonance imaging, Methods, Mutual information, Neuroimaging, Resting state