An Uncertainty Analysis Based Approach to Sensor Selection in Chemical Processes

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

This work-in-progress paper proposes an approach to quantify process information in the context of sensor selection in chemical plants. The method is based on approximating the global state uncertainty via Monte Carlo simulation. In contrast to most existing approaches for sensor selection, this promises insusceptibility against dependent non-Gaussian uncertainties in steady-state or dynamic processes with the possibility to integrate data-driven models into the set of state equations. First results demonstrate that the approach can find the Pareto optimal sensor configuration for an in-silico continuous stirred tank reactor (CSTR). Additionally, the method's further development for applications in real-world scenarios is discussed.

Details

OriginalspracheEnglisch
Titel2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation, ETFA 2024
Redakteure/-innenTullio Facchinetti, Angelo Cenedese, Lucia Lo Bello, Stefano Vitturi, Thilo Sauter, Federico Tramarin
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seitenumfang4
ISBN (elektronisch)9798350361230
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Conference on Emerging Technologies and Factory Automation, ETFA
ISSN1946-0740

Konferenz

Titel29th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2024
Dauer10 - 13 September 2024
StadtPadova
LandItalien

Externe IDs

ORCID /0000-0001-7012-5966/work/174432363
ORCID /0000-0001-5165-4459/work/174432588

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Monte Carlo simulation, sensor network design, state uncertainty