An integrative analysis of image segmentation and survival of brain tumour patients
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Our contribution to the BraTS 2019 challenge consisted of a deep learning based approach for segmentation of brain tumours from MR images using cross validation ensembles of 2D-UNet models. Furthermore, different approaches for the prediction of patient survival time using clinical as well as imaging features were investigated. A simple linear regression model using patient age and tumour volumes outperformed more elaborate approaches like convolutional neural networks or radiomics-based analysis with an accuracy of 0.55 on the validation cohort and 0.51 on the test cohort.
Details
Originalsprache | Englisch |
---|---|
Titel | Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries |
Redakteure/-innen | Alessandro Crimi, Spyridon Bakas |
Herausgeber (Verlag) | Springer, Berlin [u. a.] |
Seiten | 368-378 |
Seitenumfang | 11 |
ISBN (elektronisch) | 978-3-030-46640-4 |
ISBN (Print) | 978-3-030-46639-8 |
Publikationsstatus | Veröffentlicht - 2020 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science, Volume 11992 |
---|---|
ISSN | 0302-9743 |
Konferenz
Titel | 5th International MICCAI Brainlesion Workshop, BrainLes 2019, held in conjunction with the Medical Image Computing for Computer Assisted Intervention, MICCAI 2019 |
---|---|
Dauer | 17 Oktober 2019 |
Stadt | Shenzhen |
Land | China |
Externe IDs
ORCID | /0000-0002-7017-3738/work/146646030 |
---|---|
ORCID | /0000-0002-4590-1908/work/163293974 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Deep-learning, Ensemble, Linear regression, Radiomics, Segmentation, Survival analysis, UNet