An experimental comparison of Bayesian optimization for bipedal locomotion

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Roberto Calandra - , Technische Universität Darmstadt (Autor:in)
  • André Seyfarth - , Technische Universität Darmstadt (Autor:in)
  • Jan Peters - , Technische Universität Darmstadt, Max-Planck-Institut für Intelligente Systeme (Autor:in)
  • Marc Peter Deisenroth - , Technische Universität Darmstadt, Imperial College London (Autor:in)

Abstract

The design of gaits and corresponding control policies for bipedal walkers is a key challenge in robot locomotion. Even when a viable controller parametrization already exists, finding near-optimal parameters can be daunting. The use of automatic gait optimization methods greatly reduces the need for human expertise and time-consuming design processes. Many different approaches to automatic gait optimization have been suggested to date. However, no extensive comparison among them has yet been performed. In this paper, we present some common methods for automatic gait optimization in bipedal locomotion, and analyze their strengths and weaknesses. We experimentally evaluated these gait optimization methods on a bipedal robot, in more than 1800 experimental evaluations. In particular, we analyzed Bayesian optimization in different configurations, including various acquisition functions.

Details

OriginalspracheEnglisch
TitelProceedings - IEEE International Conference on Robotics and Automation
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1951-1958
Seitenumfang8
ISBN (elektronisch)9781479936854, 9781479936854
PublikationsstatusVeröffentlicht - 22 Sept. 2014
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE International Conference on Robotics and Automation (ICRA)
ISSN1050-4729

Konferenz

Titel2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Dauer31 Mai - 7 Juni 2014
StadtHong Kong
LandChina

Externe IDs

ORCID /0000-0001-9430-8433/work/158768050