An eigenvalue stabilization technique for immersed boundary finite element methods in explicit dynamics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • S. Eisenträger - , Otto-von-Guericke-Universität Magdeburg (Autor:in)
  • L. Radtke - , Technische Universität Hamburg (Autor:in)
  • W. Garhuom - , Technische Universität Hamburg (Autor:in)
  • S. Löhnert - , Professur für Baumechanik (Autor:in)
  • A. Düster - , Technische Universität Hamburg (Autor:in)
  • D. Juhre - , Otto-von-Guericke-Universität Magdeburg (Autor:in)
  • D. Schillinger - , Technische Universität Darmstadt (Autor:in)

Abstract

The application of immersed boundary methods in static analyses is often impeded by poorly cut elements (small cut elements problem), leading to ill-conditioned linear systems of equations and stability problems. While these concerns may not be paramount in explicit dynamics, a substantial reduction in the critical time step size based on the smallest volume fraction χ of a cut element is observed. This reduction can be so drastic that it renders explicit time integration schemes impractical. To tackle this challenge, we propose the use of a dedicated eigenvalue stabilization (EVS) technique. The EVS-technique serves a dual purpose. Beyond merely improving the condition number of system matrices, it plays a pivotal role in extending the critical time increment, effectively broadening the stability region in explicit dynamics. As a result, our approach enables robust and efficient analyses of high-frequency transient problems using immersed boundary methods. A key advantage of the stabilization method lies in the fact that only element-level operations are required. This is accomplished by computing all eigenvalues of the element matrices and subsequently introducing a stabilization term that mitigates the adverse effects of cutting. Notably, the stabilization of the mass matrix Mc of cut elements – especially for high polynomial orders p of the shape functions – leads to a significant raise in the critical time step size Δtcr. To demonstrate the efficiency of our technique, we present two specifically selected dynamic benchmark examples related to wave propagation analysis, where an explicit time integration scheme must be employed to leverage the increase in the critical time step size.

Details

OriginalspracheEnglisch
Seiten (von - bis)129-168
Seitenumfang40
FachzeitschriftComputers & mathematics with applications
Jahrgang166 (2024)
PublikationsstatusVeröffentlicht - 9 Mai 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85192311212
Mendeley a3f57884-8af0-3c22-8e0a-8e73d9df6cfb

Schlagworte

Schlagwörter

  • Explicit dynamics, Eigenvalue decomposition, Immersed boundary methods, Stabilization technique, Spectral cell method, Mass lumping

Bibliotheksschlagworte