An applied Perspective: Estimating the Differential Identifiability Risk of an Exemplary SOEP Data Set

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

  • Jonas Allmann - , Technische Universität Berlin (Autor:in)
  • Saskia Nuñez von Voigt - , Technische Universität Berlin (Autor:in)
  • Florian Tschorsch - , Professur für Privacy and Security (Autor:in)

Abstract

Using real-world study data usually requires contractual agreements where research results may only be published in anonymized form. Requiring formal privacy guarantees, such as differential privacy, could be helpful for data-driven projects to comply with data protection. However, deploying differential privacy in consumer use cases raises the need to explain its underlying mechanisms and the resulting privacy guarantees. In this paper, we thoroughly review and extend an existing privacy metric. We show how to compute this risk metric efficiently for a set of basic statistical queries. Our empirical analysis based on an extensive, real-world scientific data set expands the knowledge on how to compute risks under realistic conditions, while presenting more challenges than solutions.

Details

OriginalspracheEnglisch
Seiten48-55
Seitenumfang8
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Konferenz

Titel9th IEEE European Symposium on Security and Privacy
KurztitelEuroS&P 2024
Veranstaltungsnummer9
Dauer8 - 12 Juli 2024
Webseite
OrtUniversität Wien
StadtWien
LandÖsterreich

Externe IDs

Scopus 85203000007