An AI approach for predicting the active surface of deep drawing tools in try-out

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

The tool try-out process of deep drawing tools is often tedious, iterative, and manual, leading to suboptimal results and prolonged ramp-up phases. Toolmakers first capture spotting patterns of the tool surfaces and then manually remove material based on these patterns. A key challenge is the complex interaction between the tools, the sheet metal, and the press, making it hard to predict issues that may propagate to later steps in the tool try-out process. To address this, a data-driven AI approach is proposed. Using an encoder-decoder model, it predicts the tool active surface in contact from the pressure distribution of deep drawing tools. It is trained on simulated pressure distributions, which serve as a quantitative representation of the spotting patterns. The approach is benchmarked against image-to-image translation methods such as U-Net and Pix2Pix.
Titel in Übersetzung
Ein KI-Ansatz zur Vorhersage der Aktivfläche von Tiefziehwerkzeugen in der Werkzeugeinarbeitung

Details

OriginalspracheEnglisch
Seiten (von - bis)251-260
Seitenumfang10
FachzeitschriftAt-Automatisierungstechnik
Jahrgang73
Ausgabenummer4
PublikationsstatusVeröffentlicht - 28 Apr. 2025
Peer-Review-StatusJa

Externe IDs

Scopus 105005549501
ORCID /0000-0002-1093-2149/work/184884536

Schlagworte

Schlagwörter

  • Deepdrawing, FE simulation, Machine learning, Tool try-out, deepdrawing, tool try-out, machine learning