Amplitude expansion of the phase-field crystal model for complex crystal structures
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
The phase-field crystal (PFC) model describes crystal lattices at diffusive timescales. Its amplitude expansion (APFC) can be applied to the investigation of relatively large systems under some approximations. However, crystal symmetries accessible within the APFC model are limited to basic ones, namely triangular and square in two dimensions, and body-centered cubic and face-centered cubic in three dimensions. In this work, we propose a general, amplitudes-based description of virtually any lattice symmetry. To fully exploit the advantages of this model, featuring slowly varying quantities in bulk and localized significant variations at dislocations and interfaces, we consider formulations suitable for real-space numerical methods supporting adaptive spatial discretization. We explore approaches originally proposed for the PFC model which allow for symmetries beyond basic ones through extended parametrizations. Moreover, we tackle the modeling of non-Bravais lattices by introducing an amplitude expansion for lattices with a basis and further generalizations. We study and discuss the stability of selected, prototypical lattice symmetries. As pivotal examples, we show that the proposed approach allows for a coarse-grained description of the kagome lattice, exotic square arrangements, and the diamond lattice, as bulk crystals and, importantly, hosting dislocations.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 033804 |
Fachzeitschrift | Physical review materials |
Jahrgang | 7 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 29 März 2023 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85151348960 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
ASJC Scopus Sachgebiete
Schlagwörter
- crystal defects, crystal structures, disclinations, phase-field modeling