Affine forward variance models

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jim Gatheral - , City University of New York (Autor:in)
  • Martin Keller-Ressel - , Technische Universität Dresden (Autor:in)

Abstract

We introduce the class of affine forward variance (AFV) models of which both the conventional Heston model and the rough Heston model are special cases. We show that AFV models can be characterised by the affine form of their cumulant-generating function, which can be obtained as solution of a convolution Riccati equation. We further introduce the class of affine forward order flow intensity (AFI) models, which are structurally similar to AFV models, but driven by jump processes, and which include Hawkes-type models. We show that the cumulant-generating function of an AFI model satisfies a generalised convolution Riccati equation and that a high-frequency limit of AFI models converges in distribution to an AFV model.

Details

OriginalspracheEnglisch
Seiten (von - bis)501-533
Seitenumfang33
FachzeitschriftFinance and stochastics
Jahrgang23
Ausgabenummer3
PublikationsstatusVeröffentlicht - Juli 2019
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85067482910
ORCID /0000-0003-0913-3363/work/166762749

Schlagworte

Schlagwörter

  • Stochastic volatility, Rough volatility, Riccati equation, Affine process, Hawkes process, STOCHASTIC VOLATILITY, ROUGH