Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Cornelia G. Palivan - , Universität Basel (Autor:in)
  • Lukas Heuberger - , Universität Basel (Autor:in)
  • Jens Gaitzsch - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Brigitte Voit - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Dietmar Appelhans - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Barbara Borges Fernandes - , Universitat de Barcelona (Autor:in)
  • Giuseppe Battaglia - , Universitat de Barcelona, ICREA - Institució Catalana de Recerca i Estudis Avançats (Autor:in)
  • Jianzhong Du - , Tongji University, East China University of Science and Technology (Autor:in)
  • Loai Abdelmohsen - , Eindhoven University of Technology (Autor:in)
  • Jan C. M. van Hest - , Eindhoven University of Technology (Autor:in)
  • Jinming Hu - , University of Chinese Academy of Sciences (UCAS) (Autor:in)
  • Shiyong Liu - , University of Chinese Academy of Sciences (UCAS) (Autor:in)
  • Zhiyuan Zhong - , Soochow University (Autor:in)
  • Huanli Sun - , Soochow University (Autor:in)
  • Angela Mutschler - , Université de Bordeaux (Autor:in)
  • Sebastien Lecommandoux - , Université de Bordeaux (Autor:in)

Abstract

The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.

Details

OriginalspracheEnglisch
Seiten (von - bis)5454-5467
Seitenumfang14
FachzeitschriftBiomacromolecules
Jahrgang25
Ausgabenummer9
Frühes Online-Datum28 Aug. 2024
PublikationsstatusVeröffentlicht - 9 Sept. 2024
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 39196319
Scopus 85202779816
ORCID /0000-0002-4531-691X/work/194254543

Schlagworte

Schlagwörter

  • Ring-opening polymerization, Cascade reactions, Vesicles, Nanoreactors, Membrane, Nanocompartments, Permeability, Design, Nanoparticles, Modulation