Advancements in Machine Learning for Microrobotics in Biomedicine

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Amar Salehi - , South China University of Technology, University of Tehran (Autor:in)
  • Soleiman Hosseinpour - , University of Tehran (Autor:in)
  • Nasrollah Tabatabaei - , Tehran University of Medical Sciences (Autor:in)
  • Mahmoud Soltani Firouz - , University of Tehran (Autor:in)
  • Niloufar Zadebana - , University of Tehran (Autor:in)
  • Richard Nauber - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Mariana Medina-Sánchez - , Mikro- und Nano-Biosysteme (FoG), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, CIC nanoGUNE, Ikerbasque Basque Foundation for Science (Autor:in)

Abstract

Microrobotics, particularly in the field of biomedicine, has garnered considerable attention due to its potential for noninvasive medical interventions enabled by the small size of microrobots. However, controlling and imaging them present unique challenges compared to their macroscale counterparts, primarily due to the intricate anatomical spaces and dynamic environments within the human body. Existing imaging modalities also face limitations, hindering real-time visualization and control of microrobots in deep tissue. Machine learning (ML) algorithms offer promising solutions to these challenges by enabling adaptive motion control and enhancing image resolution through robust data analysis and decision-making capabilities. In this review, a comprehensive overview of recent advancements in ML-based techniques for microrobotic research is provided, emphasizing their applications in imaging and control in biomedical contexts. Additionally, current obstacles and potential future directions for ML algorithms in microrobotics, particularly regarding their translation to clinical settings, are discussed.

Details

OriginalspracheEnglisch
Aufsatznummer2400458
FachzeitschriftAdvanced Intelligent Systems
Jahrgang7
Ausgabenummer10
Frühes Online-Datum28 Nov. 2024
PublikationsstatusVeröffentlicht - Okt. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-3295-0727/work/184438276

Schlagworte

Schlagwörter

  • artificial intelligence, automatic control, imaging modalities, machine learning, medical microrobots, reinforcement learning