Advanced Magnetic Resonance Studies of Tetraphenylporphyrinatoiron(III) Halides

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Pagnareach Tin - , University of Tennessee, Knoxville (Autor:in)
  • Shelby E. Stavretis - , University of Tennessee, Knoxville (Autor:in)
  • Mykhaylo Ozerov - , Florida State University (Autor:in)
  • J. Krzystek - , Florida State University (Autor:in)
  • A. N. Ponomaryov - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • S. A. Zvyagin - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • J. Wosnitza - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Physik in hohen Magnetfeldern (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Ching Chin Chen - , National Chung Hsing University (Autor:in)
  • Peter P.Y. Chen - , National Chung Hsing University (Autor:in)
  • Joshua Telser - , Roosevelt University Chicago (Autor:in)
  • Zi Ling Xue - , University of Tennessee, Knoxville (Autor:in)

Abstract

High-Frequency and -Field EPR (HFEPR) studies of Fe(TPP)X (X = F, Cl, Br; I, TPP2−= meso-tetraphenylporphyrinate dianion) and far-IR magnetic spectroscopic (FIRMS) studies of Fe(TPP)Br and Fe(TPP)I have been conducted to probe magnetic intra- and inter-Kramers doublet transitions in these S = 5/2 metalloporphyrin complexes, yielding zero-field splitting (ZFS) and g parameters for the complexes: Fe(TPP)F, D = +4.67(1) cm−1, E = 0.00(1) cm−1, g = 1.97(1), g|| = 2.000(5) by HFEPR; Fe(TPP)Cl, D = +6.458(2) cm−1, E = +0.015(5) cm−1, E/D = 0.002, g = 2.004(3), g|| = 2.02(1) by HFEPR; Fe(TPP)Br, D = +9.03(5) cm−1, E = +0.047(5) cm−1, E/D = 0.005, giso = 1.99(1) by HFEPR and D = +9.05 cm−1, giso = 2.0 by FIRMS; Fe(TPP)I, D = +13.84 cm−1, E = +0.07 cm−1, E/D = 0.005, giso = 2.0 by HFEPR and D = +13.95 cm−1, giso = 2.0 by FIRMS (the sign of E was in each case arbitrarily assigned as that of D). These results demonstrate the complementary nature of field- and frequency-domain magnetic resonance experiments in extracting with high accuracy and precision spin Hamiltonian parameters of metal complexes with S > 1/2. The spin Hamiltonian parameters obtained from these experiments have been compared with those obtained from other physical methods such as magnetic susceptibility, magnetic Mössbauer spectroscopy, inelastic neutron scattering (INS), and variable-temperature and -field magnetic circular dichroism (VT-VH MCD) experiments. INS, Mössbauer and MCD give good agreement with the results of HFEPR/FIRMS; the others not as much. The electronic structure of Fe(TPP)X (X = F, Cl, Br, I) was studied earlier by multi-reference ab initio methods to explore the origin of the large and positive D-values, reproducing the trends of D from the experiments. In the current work, a simpler model based on Ligand Field Theory (LFT) is used to explain qualitatively the trend of increasing ZFS from X = F to Cl to Br and to I as the axial ligand. Tetragonally elongated high-spin d5 systems such as Fe(TPP)X exhibit D > 0, but X plays a key role. Spin delocalization onto X means that there is a spin–orbit coupling (SOC) contribution to D from X, as opposed to none from closed-shell X. Over the range X = F, Cl, Br, I, X character increases as does the intrinsic SOC of X so that D increases correspondingly over this range.

Details

OriginalspracheEnglisch
Seiten (von - bis)1411-1432
Seitenumfang22
FachzeitschriftApplied Magnetic Resonance
Jahrgang51
Ausgabenummer11
PublikationsstatusVeröffentlicht - Nov. 2020
Peer-Review-StatusJa

Schlagworte