Adaptive wavelet methods for the stochastic Poisson equation
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study the Besov regularity as well as linear and nonlinear approximation of random functions on bounded Lipschitz domains in ℝ d. The random functions are given either (i) explicitly in terms of a wavelet expansion or (ii) as the solution of a Poisson equation with a right-hand side in terms of a wavelet expansion. In the case (ii) we derive an adaptive wavelet algorithm that achieves the nonlinear approximation rate at a computational cost that is proportional to the degrees of freedom. These results are matched by computational experiments.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 589-614 |
Seitenumfang | 26 |
Fachzeitschrift | BIT Numerical Mathematics |
Jahrgang | 52 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Sept. 2012 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Adaptive methods, Approximation rates, Besov regularity, Elliptic stochastic partial differential equation, Nonlinear approximation, Wavelets