Adaptive energy-control for in-memory database systems

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

The ever-increasing demand for scalable database systems is limited by their energy consumption, which is one of the major challenges in research today. While existing approaches mainly focused on transaction-oriented disk-based database systems, we are investigating and optimizing the energy consumption and performance of data-oriented scale-up in-memory database systems that make heavy use of the main power consumers, which are processors and main memory. We give an in-depth energy analysis of a current mainstream server system and show that modern processors provide a rich set of energy-control features, but lack the capability of controlling them appropriately, because of missing applicationspecific knowledge. Thus, we propose the Energy-Control Loop (ECL) as an DBMS-integrated approach for adaptive energy-control on scale-up in-memory database systems that obeys a query latency limit as a soft constraint and actively optimizes energy efficiency and performance of the DBMS. The ECL relies on adaptive workload-dependent energy profiles that are continuously maintained at runtime. In our evaluation, we observed energy savings ranging from 20 % to 40 % for a real-world load profile.

Details

OriginalspracheEnglisch
TitelSIGMOD '18: Proceedings of the 2018 International Conference on Management of Data
Herausgeber (Verlag)Association for Computing Machinery (ACM), New York
Seiten351-364
Seitenumfang14
ISBN (Print)978-1-4503-4703-7
PublikationsstatusVeröffentlicht - 27 Mai 2018
Peer-Review-StatusJa

Publikationsreihe

ReiheMOD: International Conference on Management of Data (SIGMOD)

Konferenz

Titel44th ACM SIGMOD International Conference on Management of Data, SIGMOD 2018
Dauer10 - 15 Juni 2018
StadtHouston
LandUSA/Vereinigte Staaten

Externe IDs

Scopus 85048786651
ORCID /0000-0001-8107-2775/work/142253573

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • Adaptivity, Database systems, Energy efficiency, In-memory