Adapting predictive feedback chaos control for optimal convergence speed

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christian Bick - , Max Planck Institute for Dynamics and Self-Organization, Bernstein Center Computational Neuroscience Berlin, Georg-August-Universität Göttingen (Autor:in)
  • Marc Timme - , Max Planck Institute for Dynamics and Self-Organization, Georg-August-Universität Göttingen, Bernstein Center for Computational Neuroscience Göttingen (Autor:in)
  • Christoph Kolodziejski - , Max Planck Institute for Dynamics and Self-Organization, Georg-August-Universität Göttingen (Autor:in)

Abstract

Stabilizing unstable periodic orbits in a chaotic invariant set not only reveals information about its structure but also leads to various interesting applications. For the successful application of a chaos control scheme, convergence speed is of crucial importance. Here we present a predictive feedback chaos control method that adapts a control parameter online to yield optimal asymptotic convergence speed. We study the adaptive control map both analytically and numerically and prove that it converges at least linearly to a value determined by the spectral radius of the control map at the periodic orbit to be stabilized. The method is easy to implement algorithmically and may find applications for adaptive online control of biological and engineering systems.

Details

OriginalspracheEnglisch
Seiten (von - bis)1310-1324
Seitenumfang15
FachzeitschriftSIAM Journal on Applied Dynamical Systems
Jahrgang11
Ausgabenummer4
PublikationsstatusVeröffentlicht - 16 Okt. 2012
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-5956-3137/work/142242483

Schlagworte

Schlagwörter

  • Adaptation, Asymptotic convergence speed, Chaos control, Predictive feedback control

Bibliotheksschlagworte