Adaptations for Wear Resistance and Damage Resilience: Micromechanics of Spider Cuticular “Tools”

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Maryam Tadayon - , Professur für Bioprospektion, Max Planck Institute of Colloids and Interfaces (Autor:in)
  • Osnat Younes-Metzler - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • Yaniv Shelef - , Ben-Gurion University of the Negev (Autor:in)
  • Paul Zaslansky - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Alon Rechels - , Ben-Gurion University of the Negev (Autor:in)
  • Alex Berner - , Technion-Israel Institute of Technology (Autor:in)
  • Emil Zolotoyabko - , Technion-Israel Institute of Technology (Autor:in)
  • Friedrich G. Barth - , Universität Wien (Autor:in)
  • Peter Fratzl - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • Benny Bar-On - , Ben-Gurion University of the Negev (Autor:in)
  • Yael Politi - , Professur für Bioprospektion, Max Planck Institute of Colloids and Interfaces (Autor:in)

Abstract

In the absence of minerals as stiffening agents, insects and spiders often use metal-ion cross-linking of protein matrices in their fully organic load-bearing “tools.” In this comparative study, the hierarchical fiber architecture, elemental distribution, and the micromechanical properties of the manganese- and calcium-rich cuticle of the claws of the spider Cupiennius salei, and the Zn-rich cuticle of the cheliceral fangs of the same animal are analyzed. By correlating experimental results to finite element analysis, functional microstructural and compositional adaptations are inferred leading to remarkable damage resilience and abrasion tolerance, respectively. The results further reveal that the incorporation of both zinc and manganese/calcium correlates well with increased biomaterial's stiffness and hardness. However, the abrasion-resistance of the claw material cross-linked by incorporation of Mn/Ca-ions surpasses that of many other non-mineralized biological counterparts and is comparable to that of the fang with more than triple Zn content. These biomaterial-adaptation paradigms for enhanced wear-resistance may serve as novel design principles for advanced, high-performance, functional surfaces, and graded materials.

Details

OriginalspracheEnglisch
Aufsatznummer2000400
FachzeitschriftAdvanced functional materials
Jahrgang30
Ausgabenummer32
PublikationsstatusVeröffentlicht - 1 Aug. 2020
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2872-8277/work/142239154

Schlagworte

Schlagwörter

  • abrasion resistance, biopolymers, metal-ion cross-linking, microstructure, tribological behavior