Adaptation of models for food intake sound recognition using maximum a posteriori estimation algorithm
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Obesity and overweight are big healthcare challenges in the world's population. Automatic food intake recognition algorithms based on analysis of food intake sounds offer the potential of being a useful tool for simplifying data logging of consumed food. High inter-individual differences of the users' food intake sounds decrease the classification accuracy achieved with a user-unspecific algorithm. To overcome this problem, the Maximum a Posteriori (MAP) estimation is implemented and tested on one user consuming eight types of food. The dependency of the classification enhancement from the size of the adaptation set is investigated. Overall recognition accuracy can be increased from 48% to around 79% using records of 10 intake cycles for every food type of one subject. An increase by 7.5% can be shown for a second subject. This shows the usability of the MAP adaptation algorithm at food intake sound classification tasks. The algorithm provides a suitable way for adapting models to a user, thereby, enhancing the performance of food intake classification.
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings - BSN 2012 |
Herausgeber (Verlag) | IEEE Computer Society |
Seiten | 148-153 |
Seitenumfang | 6 |
ISBN (elektronisch) | 978-0-7695-4698-8 |
ISBN (Print) | 978-1-4673-1393-3 |
Publikationsstatus | Veröffentlicht - 2012 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | International Workshop on Wearable and Implantable Body Sensor Networks (BSN) |
---|
Konferenz
Titel | 9th International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2012 |
---|---|
Dauer | 9 - 12 Mai 2012 |
Stadt | London |
Land | Großbritannien/Vereinigtes Königreich |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- chewing sound, food intake monitoring, Hidden Markov Models, Maximum a Posteriori estimation, model adaptation, on-body sensor system, user adaptation